您的位置首页 >安保动态 >

互联网实时新闻:谷歌TensorFlow 2.2.0正式发布:道别Python 2拥抱Python 3

导读 分享一篇有关互联网,手机方面文章给大家,相信很多小伙伴们还是对互联网,手机这方面还是不太了解,那么小编也在网上收集到了一些关于手机

分享一篇有关互联网,手机方面文章给大家,相信很多小伙伴们还是对互联网,手机这方面还是不太了解,那么小编也在网上收集到了一些关于手机和互联网这方面的相关知识来分享给大家,希望大家看了会喜欢。

  TensorFlow 2.2.0 正式发布了,该版本终止了对 Python 2 的支持。现在,新的 TensorFlow Docker 镜像版本仅提供 Python 3。

image.png

  主要特性和改进

  · 将字符串张量的标量类型从 std::string 替换为 tensorflow::tstring

  · TF 2 的新 Profiler,用于 CPU/GPU/TPU。它提供设备和主机性能分析,包括输入管道和 TF Ops。

  · 不推荐使用 SWIG,而是使用 pybind11 将 C++ 函数导出到 Python,这是弃用 Swig 所作努力的一部分。

  · tf.distribute:

  通过使用新添加的 tf.keras.layers.experimental.SyncBatchNormalization 层,添加了对全局同步 BatchNormalization 的支持。该层将在参与同步训练的所有副本之间同步 BatchNormalization 统计信息。

  使用 tf.distribute.experimental.MultiWorkerMirroredStrategy 提高 GPU 多工分布式培训的性能

  将 NVIDIA NCCL 更新到 2.5.7-1,以获得更好的性能和性能调整。

  支持在 float16 中减少梯度。

  所有实验的支持都减少了梯度压缩,以允许使用反向路径计算进行重叠梯度聚合。

  弃用 experimental_run_v2 方法。

  添加对 DistributedIterators 的 CompositeTensor 支持。这应该有助于防止不必要的功能跟踪和内存泄漏。

  · tf.keras:

  Model.fit 的主要改进:

  可以通过覆盖 Model.train_step 将自定义训练逻辑与 Model.fit 结合使用。

  轻松编写最新的培训循环,而不必担心 Model.fit 为你处理的所有功能(分发策略,回调,数据格式,循环逻辑等)

  SavedModel 现在使用其自己的 Model._saved_model_inputs_spec attr 而不是依赖于不再为子类 Model 设置的 Model.inputs 和 Model.input_names。

  生成器支持动态形状。

  现在,SavedModel 格式支持所有 Keras 内置层(包括指标,预处理层和有状态 RNN 层)。

  更新 Keras 批处理规范化层,以使用 fused_batch_norm 中的运行平均值和平均值计算。

  · tf.lite:

  默认情况下启用 TFLite 实验性新转换器。

  · XLA

  XLA 现在可以在 Windows 上构建并运行。所有预构建的软件包都随附有 XLA。

  可以在 CPU 和 GPU 上使用“编译或抛出异常”语义为 tf.function 启用 XLA。

  新版本包含大量 bug 修复等,详情可见更新说明:

  https://github.com/tensorflow/tensorflow/releases/tag/v2.2.0

特别提醒:本网内容转载自其他媒体,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!