您的位置首页 >理财 >

内切圆半径公式证明(内切圆半径公式)

您好,现在程程来为大家解答以上的问题。内切圆半径公式证明,内切圆半径公式相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、解:设三角形三边为a,b,c,面积为S,外接圆半径为R,内切圆半径为r则S=1/2*(a+b+c)*r得r=2S/(a+b+c)注:证明:设O为内切圆心,则三角形ABC分解成OAB,OBC,OAC三个三角形,其面积分别是1/2*cr,1/2*ar,1/2*br。

2、则S=1/2*ar+1/2*br+1/2*cr=1/2*(a+b+c)*rS=abc/(4R)R=abc/4S注:证明:由正弦定理得a/sinA=2R得sinA=a/(2R)S=1/2*bc*sinA=1/2*bc*a/(2R)S=abc/(4R)。

本文就为大家分享到这里,希望小伙伴们会喜欢。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!